
UNIVERSITY OF WASHINGTON

Data Visualization with ggplot2

Adam Kuczynski

UNIVERSITY OF WASHINGTON

ggplot2()
The ggplot2 package is based on a
philosophy outlined in The Grammar
of Graphics

Understanding the philosophy is
90% of understanding how to create
figures with ggplot2

The remaining 10% is learning the
various functions that correspond
with each part of the philosophy

This lecture is focused on
understanding that philosophy, but
we will also play around with some
example code

2 / 65

https://www.springer.com/gp/book/9780387245447

UNIVERSITY OF WASHINGTON

The Grammar of Graphics
Central Idea: Instead of creating a function for every single type of plot,1

decompose graphics its its separate components/layers that can be used
flexibly to create (almost) any type of plot you want

Data

Mapping

Geometries

Statistics

Scale

Facets

Coordinates

Theme

[1] New types of plots are being created nearly every day, so this would be impossible
to accomplish

3 / 65

UNIVERSITY OF WASHINGTON

Example Data: gapminder
We will be using the gapminder data from the gapminder package for this lecture

str(gapminder)

142 countries (country)
5 continents (continent)
12 discrete years from 1952 to 2007 (year)
life expectancy (lifeExp)
population estimate (pop)
GDP per capita (gpsPercap)

tibble [1,704 × 6] (S3: tbl_df/tbl/data.frame)
$ country : Factor w/ 142 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ...
$ continent: Factor w/ 5 levels "Africa","Americas",..: 3 3 3 3 3 3 3 3 3 3 ...
$ year : int [1:1704] 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...
$ lifeExp : num [1:1704] 28.8 30.3 32 34 36.1 ...
$ pop : int [1:1704] 8425333 9240934 10267083 11537966 13079460 14880372 12
$ gdpPercap: num [1:1704] 779 821 853 836 740 ...

4 / 65

UNIVERSITY OF WASHINGTON

A blank ggplot template
ggplot()

The + sign is used to add layers

ggplot() +
 geom_layer() +
 another_geom_layer() +
 facet_layer() +
 theme_layer()

Layers are added on top of each other, so the
order matters

Unlike base R plots, ggplots can be saved as
objects

p <- ggplot() + ...

Constructing a ggplot
ggplot figures are created started with the ggplot() function

ggplot(data = NULL, mapping = aes(), ..., environment = parent.frame())

data defined within a call to ggplot() are defined globally, which means each layer will used
these data for plotting by default
mapping defined within a call to ggplot() are also defined globally for each layer to use by
default

5 / 65

UNIVERSITY OF WASHINGTON

This layer refers to the data that go
into your figure

Can be one dataframe (defined
globally) or many dataframes (defined
at each layer)

Creating graphics is mostly about
getting your data cleaned and in the
format you need

Most of the time your data will
need to be in long (aka "tidy")
format

Sometimes you will need to
supply data of summary statistics
(e.g., for geom_errorbar()), but
most of the time you will control
the summary statistics within the
statistics layer

Set global data as flights
(from nycflights13 package)
ggplot(data = gapminder)

☝ Because we do not have any geometry,
the plot is still blank

Data

6 / 65

UNIVERSITY OF WASHINGTON

Once you have your data, you need to inform
the graphics function how those data fit into the
plot you want to create

In other words, you need to tell the graphics
which variable represents x , y , etc.

There are tons of different aesthetic
specifications, which can be found in this
documentation. Some of the most common are:

x , y (x and y axis)
color , fill
shape
linetype

Mapping occurs inside a function called aes() ,
which stands for for aesthetics

aes(x = my_x_var, y = my_y_var)

Aesthetic mapping:
* `x` -> `my_x_var`
* `y` -> `my_y_var`

☝ The plot is getting some shape, but still no
data are plotted because we have not added a
geometry layer

Mapping
Map the x-axis to `year`
color to `continent`
ggplot(data = gapminder,
 mapping = aes(x = year, color = cont

7 / 65

https://ggplot2.tidyverse.org/articles/ggplot2-specs.html

UNIVERSITY OF WASHINGTON

Mapping
Calls to aes() are always made within other ggplot2 functions (i.e., they are attributes of a
layer, not their own layer)

Most of the time mapping will take column names for your data that you want to map on to
each aesthetic of a plot

However, aes() can also take expressions (i.e., R code) that determine the axes, color
groups, etc.

For example:

ggplot(data = gapminder,
 mapping = aes(x = year,
 y = gdpPercap * pop,
 color = continent == "Asia"))

☝ From the gapminder data:

map year onto the x-axis
total GDP (gdpPercap * pop) on the y-axis
different colors where contintent == and != "Asia"

8 / 65

UNIVERSITY OF WASHINGTON

Mapping (wrong)
ggplot(data = gapminder,
 mapping = aes(x = year,
 y = lifeExp,
 color = "red")) +
 ...

Setting (right)
ggplot(data = gapminder,
 mapping = aes(x = year,
 y = lifeExp)) +
 ...(color = "red")
#

Mapping vs. Setting
Arguments inside aes() (color, size, shape, etc.) map aesthetics to the data such that the colors, sizes,
shapes, etc. depend on the data

Used to plot different colors, shapes, sizes, etc. based on groups/condition in your data

These same arguments placed outside aes() (e.g., within geom_*()) set aesthetics to the layer such
that the colors do not depend on the data

Used to change the colors, shapes, sizes, etc. of the entire plot/layer

9 / 65

UNIVERSITY OF WASHINGTON

ggplot(data = gapminder,
 mapping = aes(x = year,
 y = lifeExp)) +
 geom_line(stat = "summary")

ggplot(data = gapminder,
 mapping = aes(x = year)) +
 # No `y` mapping needed for boxplot
 geom_boxplot()

Geometries
Mostly what you think about in ggplot2
Take all the scale values from come from mapping and may have been transformed by
statistics and interprets/plots them in some way

e.g., a line geometry (geom_line()) interprets data on way and creates lines on
your figure while a boxplot geometry (geom_boxplot()) interprets the data
another way

10 / 65

UNIVERSITY OF WASHINGTON

If we create a line geometry with the data "as is"
we get the following plot:

ggplot(data = gapminder,
 mapping = aes(x = year,
 y = lifeExp)) +
 geom_line() # stat = "identity"

☝ Plots every single point across every single
year

When we change the default to summary, we get
a plots of mean values (changed with fun)

ggplot(data = gapminder,
 mapping = aes(x = year,
 y = lifeExp)) +
 geom_line(stat = "summary")

☝ Plots mean values for all observations within
each year

Geometries
Geometries are intimately intertwined with statistics, and each geom_*() has a default statistic
(stat) assigned
The default statistic for geom_line() is identity, which means ("leave the data as is").

11 / 65

https://ggplot2.tidyverse.org/reference/stat_summary.html
https://ggplot2.tidyverse.org/reference/stat_identity.html

UNIVERSITY OF WASHINGTON

Geometries
Different geometries do not necessary share the same mapping. For
example, geom_point() needs (at minimum) an x and y mapping, but
geom_histogram() only needs an x mapping (the statistic determines
the y-axis)

There is an "Aesthetics" section in the help page for each geom that
describes the required and optional mapping parameters

For example, goem_linerange() needs x or y , ymin or xmin , and
ymax or xmax while geom_histogram() needs only x or y

Multiple Geometries
You can (and often will) have multiple layers of geometries in the same
figure

The order or your geometries matter, because each later is plotted on top
of the previous layers

12 / 65

UNIVERSITY OF WASHINGTON

ggplot(data = gapminder,
 mapping = aes(x = year,
 y = lifeExp)) +
 geom_bar(stat = "summary",
 width = 3,
 fill = "red")

Geometries

Add bar geometry

13 / 65

UNIVERSITY OF WASHINGTON

ggplot(data = gapminder,
 mapping = aes(x = year,
 y = lifeExp)) +
 geom_bar(stat = "summary",
 width = 3,
 fill = "red") +
 geom_line(stat = "summary",
 color = "blue")

Geometries

Add line geometry

14 / 65

UNIVERSITY OF WASHINGTON

ggplot(data = gapminder,
 mapping = aes(x = year,
 y = lifeExp)) +
 geom_bar(stat = "summary",
 width = 3,
 fill = "red") +
 geom_line(stat = "summary",
 color = "blue") +
 geom_point(stat = "summary",
 color = "orange")

Geometries

Add point geometry

15 / 65

UNIVERSITY OF WASHINGTON

ggplot(data = gapminder,
 mapping = aes(x = year,
 y = lifeExp)) +
 geom_bar(stat = "summary",
 width = 3,
 fill = "red") +
 geom_line(stat = "summary",
 color = "blue") +
 geom_point(stat = "summary",
 color = "orange") +
 geom_area(stat = "summary",
 alpha = .5,
 fill = "blue")

Geometries

Add area geometry

16 / 65

UNIVERSITY OF WASHINGTON

ggplot(data = gapminder,
 mapping = aes(x = year,
 y = lifeExp)) +
 geom_bar(stat = "summary") +
 geom_errorbar()

Error: geom_errorbar
requires the following
missing aesthetics: ymin
and ymax or xmin and xmax

Statistics
Your data do not always have the required statistics for each type of figure

For example, plotting a boxplot requires calculating the 25th, 50th, and 75th
percentiles of your data and the interquartile range
Sometimes your data are exactly what is needed (e.g., creating a scatterplot), in
which case you set your statistic to identity which just passes your data on to that
layer

Provides convenience and flexibility because you do not need to know how your data
need to be manipulated for each type of figure

However, sometimes you do need to manipulate your data to get the correct aesthetic
mapping for a geom (e.g., creating errobars)

17 / 65

UNIVERSITY OF WASHINGTON

Statistics: Errorbars
Step 1: create summary statistics from our data (mean and standard error) :

gp_summary <- gapminder %>%
 group_by(year) %>%
 summarize(mean_lifeExp = mean(lifeExp, na.rm = T),
 se_lifeExp = sd(lifeExp, na.rm = T) / sqrt(n()))

Step 2: Supply these data to the geom_errorbar() layer to control the height of the errorbars

ggplot(data = gapminder, mapping = aes(x = year, y = lifeExp)) +
 geom_point(stat = "summary") +
 geom_errorbar(data = gp_summary,
 mapping = aes(x = year, y = mean_lifeExp,
 ymin = mean_lifeExp - se_lifeExp,
 ymax = mean_lifeExp + se_lifeExp))

18 / 65

UNIVERSITY OF WASHINGTON

geom_linerange()

geom_pointrange()

geom_crossbar()

geom_errorbar()

Statistics

Errorbar Types

19 / 65

UNIVERSITY OF WASHINGTON

geom_point(stat = "identity"

geom_count(stat = "sum")

geom_jitter(stat = "identity")

geom_bar(stat = "count")

geom_density(stat = "density")

geom_histrogram(stat = "bin")

geom_boxplot(stat = "boxplot")

geom_violin(stat = "ydensity")

geom_rug(stat = "identity")

geom_freqpoly(stat = "bin")

geom_quantile(stat =
"quantile")

geom_smooth(stat = "smooth")

Statistics
Statistics are linked to geometries such that each geometry requires a statistic
(and vice versa: each statistic requires a geometry)

Thus, geometries have default statistics that try to guess what you want to plot
but that can also be changed

Defaults for common geometries:

20 / 65

UNIVERSITY OF WASHINGTON

geom_*()

ggplot(data = gapminder,
 mapping = aes(x = year,
 y = lifeExp)) +
 geom_bar(stat = "summary")

stat_*()

ggplot(data = gapminder,
 mapping = aes(x = year,
 y = lifeExp)) +
 stat_summary(geom = "bar")

Statistics
Geometries can be created using geom_*() and passing in the statistic as an argument (as
we have seen) or using stat_*() and passing the geometry in as an argument

There's no one right way to do this, although it is most common to create the geometry with
geom_*() rather than stat_*()

21 / 65

UNIVERSITY OF WASHINGTON

No color mapping

ggplot(data = gapminder,
 mapping = aes(x = year,
 y = lifeExp)) +
 # No color mapping
 geom_line(stat = "summary")

Color mapped to continent

ggplot(data = gapminder,
 mapping = aes(x = year,
 y = lifeExp,
 color = continent)) +
 geom_line(stat = "summary")

Mapping
Now that we know how to create geometry and statistics layers we can understand aesthetic
mapping more completely

22 / 65

UNIVERSITY OF WASHINGTON

Mapping
You can map the same (or different) columns to multiple aesthetics within one call to aes()

ggplot(data = gapminder,
 mapping = aes(x = year,
 y = lifeExp,
 color = continent,
 linetype = continent))
 # Size equal among groups
 geom_line(stat = "summary")

ggplot(data = gapminder,
 mapping = aes(x = year,
 y = lifeExp,
 color = continent,
 linetype = continent,
 size = ave(pop, contin
 geom_line(stat = "summary")

23 / 65

UNIVERSITY OF WASHINGTON

Mapping: Layer-level
Line geometry for each country, color by continent

ggplot(data = gapminder,
 mapping = aes(x = year, y = lifeExp, color = continent)) +
 geom_line(mapping = aes(group = country),
 stat = "summary",
 alpha = .5)

#

24 / 65

UNIVERSITY OF WASHINGTON

Mapping: Layer-level
Line geometry for each continent, color by continent

ggplot(data = gapminder,
 mapping = aes(x = year, y = lifeExp, color = continent)) +
 geom_line(mapping = aes(group = country),
 stat = "summary",
 alpha = .5) +
 geom_line(stat = "summary",
 size = 3)

25 / 65

UNIVERSITY OF WASHINGTON

Scales
How are properties of the axes, colors, and other aethetics determined? Scales!

Scales control the details of how data values are translated to visual properties (e.g., plot Africa with
#F8766D, Americas with #B79F00, etc.)

All geometries are given default scales which you can override with the scale_*() function

To get the scales for each layer of your ggplot figure, use build_ggplot()

p <- ggplot(data = gapminder,
 mapping = aes(x = year, y = lifeExp, color = continent)) +
 geom_line(stat = "summary")

ggplot_build(p)$data[[1]] %>%
 str()

'data.frame': 60 obs. of 11 variables:
$ colour : chr "#F8766D" "#F8766D" "#F8766D" "#F8766D" ...
$ x : num 1952 1957 1962 1967 1972 ...
$ group : int 1 1 1 1 1 1 1 1 1 1 ...
$ y : num 39.1 41.3 43.3 45.3 47.5 ...
$ ymin : num 38.4 40.5 42.5 44.5 46.6 ...
$ ymax : num 39.8 42 44.1 46.2 48.3 ...
$ PANEL : Factor w/ 1 level "1": 1 1 1 1 1 1 1 1 1 1 ...
$ flipped_aes: logi FALSE FALSE FALSE FALSE FALSE FALSE ...
$ size : num 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ...
$ linetype : num 1 1 1 1 1 1 1 1 1 1 ...
$ alpha : logi NA NA NA NA NA NA ...

26 / 65

UNIVERSITY OF WASHINGTON

Scales
Scale functions have the syntax: scale_<aesthetic>_<type> where <aesthetic> refers to each
aesthetic mapping (x , y , color , etc.) and <type> refers to the type of scale (continuous, discrete,
log10, etc.)

Axes scales

scale_x_continous() , scale_y_continuous() (transform with trans argument)
scale_x_log10() , scale_y_log10()
scale_x_sqrt() , scale_y_sqrt()
scale_x_reverse() , scale_y_reverse()
scale_x_discrete() , scale_y_discrete()
scale_x_binned() , scale_y_binned()

Color, shape, size scales

scale_color_continuous() , scale_shape_continuous() , scale_size_continuous()
scale_color_discrete() , scale_shape_discrete() , scale_size_discrete()
scale_color_binned() , scale_shape_binned() , scale_size_binned()
scale_color_brewer() , scale_shape_brewer() , scale_size_brewer()

There are dozens of different types of scales in ggplot2 , all of which can be found in this
documentation.

Also check out the scales package

27 / 65

https://ggplot2.tidyverse.org/reference/#section-scales
https://cran.r-project.org/web/packages/scales/scales.pdf

UNIVERSITY OF WASHINGTON

Scales: Example
ggplot(data = gapminder,
 mapping = aes(x = year,
 y = gdpPercap * pop,
 color = continent)) +
 geom_line(stat = "summary", size = 1.5) +
 geom_point(stat = "summary", shape = 21, fill = "white", size = 2)
 #
 #
 #
 #
 #

28 / 65

UNIVERSITY OF WASHINGTON

Scales: Example
ggplot(data = gapminder,
 mapping = aes(x = year,
 y = gdpPercap * pop,
 color = continent)) +
 geom_line(stat = "summary", size = 1.5) +
 geom_point(stat = "summary", shape = 21, fill = "white", size = 2) +
 scale_x_continuous(name = "Year",
 breaks = unique(gapminder$year))
 #
 #
 #

29 / 65

UNIVERSITY OF WASHINGTON

Scales: Example
ggplot(data = gapminder,
 mapping = aes(x = year,
 y = gdpPercap * pop,
 color = continent)) +
 geom_line(stat = "summary", size = 1.5) +
 geom_point(stat = "summary", shape = 21, fill = "white", size = 2) +
 scale_x_continuous(name = "Year",
 breaks = unique(gapminder$year)) +
 scale_y_continuous(name = "Gross Domestic Product (USD)")
 #
 #

30 / 65

UNIVERSITY OF WASHINGTON

Scales: Example
ggplot(data = gapminder,
 mapping = aes(x = year,
 y = gdpPercap * pop,
 color = continent)) +
 geom_line(stat = "summary", size = 1.5) +
 geom_point(stat = "summary", shape = 21, fill = "white", size = 2) +
 scale_x_continuous(name = "Year",
 breaks = unique(gapminder$year)) +
 scale_y_continuous(name = "Gross Domestic Product (USD)") +
 scale_color_brewer(palette = "Set1")
 #

31 / 65

UNIVERSITY OF WASHINGTON

Scales: Example
ggplot(data = gapminder,
 mapping = aes(x = year,
 y = gdpPercap * pop,
 color = continent)) +
 geom_line(stat = "summary", size = 1.5) +
 geom_point(stat = "summary", shape = 21, fill = "white", size = 2) +
 scale_x_continuous(name = "Year",
 breaks = unique(gapminder$year)) +
 scale_y_continuous(name = "Gross Domestic Product (USD)") +
 scale_color_brewer(palette = "Set1") +
 ggtitle("Life Expectancy Over Time by Continent")

32 / 65

UNIVERSITY OF WASHINGTON

Scales: Continuous Color
ggplot(data = gapminder,
 mapping = aes(x = year,
 y = lifeExp,
 group = continent,
 size = ave(pop, continent),
 color = ave(gdpPercap, continent))) +
 geom_point(stat = "summary") +
 scale_color_continuous(name = "GDP Per Capita") +
 scale_size_continuous(name = "Avg. Population")

33 / 65

UNIVERSITY OF WASHINGTON

Often we are focused on creating one
figure per plotting area, but we are not
constrained to this and may want to
create multiple subplots when looking
at our data

Facets are multiple panels of plots,
with the same plotting logic, on
different groups of your data

Facets are most helpful when you are
investigating your data, but they may
help you create figures for publication
as in Kleiman et al. (2017)

Use facets to prevent overplotting
(plotting too much data in one figure)

Facets

Two different kinds of facets: facet_wrap() and facet_grid()

Because facets are extendable, there are packages (e.g., ggh4x) with additional types of
facets

34 / 65

https://ggplot2-book.org/facet.html
https://doi.org/10.1037/abn0000273
https://teunbrand.github.io/ggh4x/articles/Facets.html

UNIVERSITY OF WASHINGTON

Facets:facet_wrap()
facet_wrap() takes a column from your data with a grouping structure and creates several
subplots for each group (facet_wrap(~ groupvar))

ggplot(data = gapminder,
 mapping = aes(x = year,
 y = lifeExp)) +
 geom_line(mapping = aes(group = country), stat = "summary", size = .25) +
 geom_line(stat = "summary", size = 2, alpha = .5, color = "blue") +
 facet_wrap(~ continent)

35 / 65

UNIVERSITY OF WASHINGTON

Facets:facet_grid()
facet_grid() takes two grouping variables and creates plots that show the intersection
between them (facet_grid(group1 ~ group2))

ggplot(data = gapminder,
 mapping = aes(x = year,
 y = lifeExp)) +
 geom_line(mapping = aes(group = country), stat = "summary", size = .25) +
 geom_line(stat = "summary", size = 2, alpha = .5, color = "blue") +
 facet_grid(continent ~ gdprelative) # GDP larger/smaller to continent mean

36 / 65

UNIVERSITY OF WASHINGTON

Facets:facet_grid()
facet_grid() can also be arranged with ngroups panels with ~ group1 + group2

ggplot(data = gapminder,
 mapping = aes(x = year,
 y = lifeExp)) +
 geom_line(mapping = aes(group = country), stat = "summary", size = .25) +
 geom_line(stat = "summary", size = 2, alpha = .5, color = "blue") +
 facet_grid(~ continent + gdprelative)

37 / 65

UNIVERSITY OF WASHINGTON

Facets + Scales
By default, facets fix the x and y scales across all plots
Often this makes sense, because you want to compare the same data across different
groups, but sometimes you may want to free either/both of the axis scales. You can do
this with the scales argument ("free" , "free_x" , "free_y")

ggplot(...) +
 facet_grid(continent ~ gdprelative,
 scales = "free")

38 / 65

UNIVERSITY OF WASHINGTON

Coordinates
The coordinate system represents a physical mapping of the plot's aesthetics
onto the screen

Many types of coordinate systems, but we are most used to the Cartesian
system (x , y value pairs)

Types of coordinate systems in ggplot2:

coord_cartesian() : Cartesian coordinates

coord_trans() : Transformed Cartesian coordinate system

coord_fixed() : Cartesian coordinates with a fixed aspect ratio

coord_flip() : Cartesian coordinates with x and y flipped

coord_polar() polar coordinates

coord_map() , coord_quickmap() : map projections (latitude, longitude)

39 / 65

UNIVERSITY OF WASHINGTON

ggplot(data = gapminder,
 mapping = aes(x = continent,
 y = gdpPercap)) +
 geom_bar(stat = "summary")
 #

ggplot(data = gapminder,
 mapping = aes(x = continent,
 y = gdpPercap)) +
 geom_bar(stat = "summary") +
 coord_flip()

Coordinates:coord_flip()

40 / 65

UNIVERSITY OF WASHINGTON

Bar Chart Coxcomb Plot

Coordinates:coord_polar()
coord_polar() interprets x and y as the radius and angle, respecitvely

ggplot(data = gapminder,
 mapping = aes(x = year,
 y = gdpPercap,
 fill = continent)) +
 geom_bar(stat = "summary", color = "black
 #

ggplot(data = gapminder,
 mapping = aes(x = year,
 y = gdpPercap,
 fill = continent)) +
 geom_bar(stat = "summary", width = 5, col
 coord_polar()

41 / 65

UNIVERSITY OF WASHINGTON

Coordinates:coord_polar()
Pie Chart

ggplot(data = gapminder,
 mapping = aes(x = "", y = pop, fill
 geom_bar(stat = "summary") +
 #

ggplot(data = gapminder,
 mapping = aes(x = "", y = pop, fill
 geom_bar(stat = "summary") +
 coord_polar(theta = "y") # map angle to y

42 / 65

UNIVERSITY OF WASHINGTON

Cartesian System Azimuthal (orthographic) Projection

Coordinates:coord_map()

ggplot(data = map_data("world"),
 mapping = aes(x = long,
 y = lat,
 group = group)) +
 geom_path() +
 scale_y_continuous(breaks = (-2:2) * 30)
 scale_x_continuous(breaks = (-4:4) * 45)
 #
 #

ggplot(data = map_data("world"),
 mapping = aes(x = long,
 y = lat,
 group = group)) +
 geom_path() +
 scale_y_continuous(breaks = (-2:2) * 30)
 scale_x_continuous(breaks = (-4:4) * 45)
 coord_map(projection = "ortho",
 orientation = c(30, -94, 0))

43 / 65

UNIVERSITY OF WASHINGTON

Scales

1. Transform data
2. Estimate statistic

log10(GDP) %>% mean()
ggplot(...) +
 scale_y_log10(name = "GDP")

Coordinates

1. Estimate statistic
2. Transform data

mean(GDP) %>% log10
ggplot(...) +
 coord_trans(y = "log10")

Scales vs. Coordinates

44 / 65

UNIVERSITY OF WASHINGTON

Scales vs. Coordinates
You can use both scales and coordinates together to estimate your model on the transformed data and
transform is back for interpretation

(A) Linear model on original data - does not fit well; (B) linear model on log10 transformed GDP - fits well; (C)
Linear model on original data, then log10 transform y-axis (not in original scale); (D) log10 transform GDP,
estimate model, backtransform axes to get original scale

45 / 65

UNIVERSITY OF WASHINGTON

theme_grey() 👈 default

theme_bw()

theme_linedraw()

theme_light()

theme_dark()

theme_minimal()

theme_classic()

theme_void()

theme_test()

Theme
The theme encompasses every part of the graphic that is not part of the data
(i.e., has no mapping to the data)

There are several pre-made themes that come with ggplot2:

46 / 65

https://ggplot2.tidyverse.org/reference/ggtheme.html

UNIVERSITY OF WASHINGTON

Theme
To tweak other aspects of your plots them you can use the theme() function,
which has 94 arguments to give you complete control over all elements of
your plot

To demonstrate, we'll use the following base plot from Slide 32:

47 / 65

UNIVERSITY OF WASHINGTON

Theme: panel
p +
 theme(panel.grid.major = element_line(color = "black", linetype = 2, size = 0.25),
 panel.grid.minor = element_blank(),
 panel.background = element_rect(fill = "white"),
 panel.border = element_rect(color = "black", fill = NA, size = 1))

48 / 65

UNIVERSITY OF WASHINGTON

Theme: axes
p +
 theme(title = element_text(family = "Ubuntu Mono", face = "bold"),
 axis.title.y = element_text(family = "Ubuntu Mono"),
 axis.title.x = element_blank(),
 axis.text = element_text(family = "Ubuntu Mono", color = "black", size = 11),
 axis.text.x = element_text(angle = 45, hjust = 1))

49 / 65

UNIVERSITY OF WASHINGTON

Theme: legend
p +
 theme(legend.key = element_blank(),
 legend.text = element_text(family = "Ubuntu Mono")) +
 guides(color = guide_legend(title = "Continent"))

50 / 65

UNIVERSITY OF WASHINGTON

p +
 theme_monotype

Theme
Just like ggplot2 comes with pre-made themes, you can create your own themes to use repeatedly
throughout your data visualizations

theme_monotype <- theme(
 # Grid theme
 panel.grid.major = element_line(color = "g
 panel.grid.minor = element_blank(),
 panel.background = element_rect(fill = "w
 panel.border = element_rect(color = "blac

 # Axis theme
 title = element_text(family = "Ubuntu Mono
 axis.title.y = element_text(family = "Ubu
 axis.title.x = element_blank(),
 axis.text = element_text(family = "Ubuntu
 axis.text.x = element_text(angle = 45, hj

 # Legend theme
 legend.key = element_blank(),
 legend.title = element_text(family = "Ubu
 legend.text = element_text(family = "Ubunt
)

51 / 65

UNIVERSITY OF WASHINGTON

patchwork

52 / 65

UNIVERSITY OF WASHINGTON

What is patchwork?
Patchwork is a package created by Thomas Lin Pedersen (also the maintainer of ggplot2) to help you
easily and flexibly combine several ggplots into the same graphic

Consider the following four plots (p1 , p2 , p3 , p4):

53 / 65

https://twitter.com/thomasp85

UNIVERSITY OF WASHINGTON

Patchwork arithmetic
Patchwork uses arithmetic (+ , - , * , /) and logical (| , &) operators to control the layout of your figure

(p1)

54 / 65

UNIVERSITY OF WASHINGTON

Patchwork arithmetic
Add p2

(p1 + p2)

55 / 65

UNIVERSITY OF WASHINGTON

Patchwork arithmetic
Add p3

(p1 + p2 + p3)

56 / 65

UNIVERSITY OF WASHINGTON

Patchwork arithmetic
Add p4

(p1 + p2 + p3) / p4

57 / 65

UNIVERSITY OF WASHINGTON

plot_layout()
You can also use plot_layout() to control the layout of your plots

The - sign ensures that all the patchwork on the LHS (p1 + p2 + p3) and on the RHS (p4) are
grouped (i.e., nested) together

p1 + p2 + p3 - p4 + plot_layout(nrow = 2)

58 / 65

UNIVERSITY OF WASHINGTON

plot_layout()
Use plot_layout() to control the heights and widths of your patchwork elements

(p1 + p2 + p3) / p4 + plot_layout(heights = c(1, 2))

59 / 65

UNIVERSITY OF WASHINGTON

Combine multiple patchworks
To keep your code organized in a complex patchwork, you can save individual patchworks and combine
them at the end

patchwork1 <- (p1 + p3 + coord_polar() + p2) + plot_layout(widths = c(1, 1, 4))
patchwork2 <- (p3 + p4) + plot_layout(widths = c(3, 1))

patchwork1 / patchwork2 + plot_layout(height = c(1, 4))

60 / 65

UNIVERSITY OF WASHINGTON

Add layers to all ggplots
With patchwork , you can control the layers (e.g., geoms, theme) of your ggplots all at once using the &
operator. This is useful, for example, when you have several plots with the same theme or want to add
a layer to every plot without adding this code to each and every plot

(p1 + p2 + p3) / p4 &
 scale_y_continuous(trans = "log10") &
 theme(plot.title = element_blank(),
 axis.text.x = element_text(angle = 45, hjust = 1),
 panel.grid = element_blank(),
 panel.background = element_rect(color = "darkblue",
 fill = "lightblue"))

61 / 65

UNIVERSITY OF WASHINGTON

Add layers to some ggplots
While the & operator adds layers to all ggplots in a patchwork, the * operator adds layers only to the
current nesting level

(p1 + p2 + p3) *
 scale_y_continuous(trans = "log10") *
 theme(plot.title = element_blank(),
 axis.text.x = element_text(angle = 45, hjust = 1),
 panel.grid = element_blank(),
 panel.background = element_rect(color = "darkblue",
 fill = "lightblue")) / p4

62 / 65

UNIVERSITY OF WASHINGTON

Controlling Legends
Imagine you have the following three plots configured using patchwork ((p1 + p2) / p3). The
legends are identical and it is only necessary to have one of them for the entire figure.

63 / 65

UNIVERSITY OF WASHINGTON

Controlling Legends
Combine identical legends with guides = "collect"

(p1 + p2) / p3 +
 plot_layout(guides = "collect")

64 / 65

UNIVERSITY OF WASHINGTON

Titles & Tags
When you have a multi-plot figure such as that in the previous slide, it is common to label each plot to
refer to in your manuscript. To apply titles and tags to the entire plotting window, you can use
plot_annotation()

(p1 + p2) / p3 +
 plot_layout(guides = "collect") +
 plot_annotation(title = "Gapminder Line Graphs",
 subtitle = "Kuczynski et al. (2021)",
 tag_levels = "A", tag_prefix = "(", tag_suffix = ")")

65 / 65

